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Abstract more recently, virtual machine monitors (VMMs). VMMs
virtualize entire software stacks including the operasiygr

Virtualization has become increasingly popular for en- tem (OS) and application, via a software layer between the
abling full system isolation, load balancing, and hardware hardware and the OS of the machine. VMMs offer a wide
multiplexing for high-end server systems. Virtualizinffso range of benefits including application and full-system iso
ware has the potential to benefit HPC systems similarly by lation (sand-boxing), OS-based migration, distributeatllo
facilitating efficient cluster management, application-is  balancing, OS-level check-pointing and recovery, and sup-
lation, full-system customization, and process migration port for multiple or customized operating systems.

However, virtualizing software is not currently employad i This added flexibility however, can potentially introduce
HPC environments due to its perceived overhead. significant execution overhead due to the extra level of in-
In this work, we investigate the overhead imposed by direction and interference between the hardware and appli-
the popular, open-source, Xen virtualization system, on cation. Recent VMM optimizations and advances however,
performance-critical HPC kernels and applications. We attempt to reduce this overhead to zero. One such tech-
empirically evaluate the impact of Xen on both communi- pique is paravirtualization [1] which is the process oftra
cation and computation and compare its use to that of a gjcally modifying a small segment of the interface that the
customized kernel using HPC cluster resources at Lawrenceyypm exports along with the OS that executes using it. Par-
Livermore National Lab (LLNL). We also employ statisti- ayirtualization significantly simplifies the process oftuir
cally sound methods to compare the performance of a par-ajization (at the cost of perfect hardware compatibility) b
avirtualized kernel against three popular Linux operating eliminating special hardware features and instructioas th
systems: RedHat Enterprise 4 (RHEL4) for build versions gre difficult to virtualize efficiently. Paravirtualizedsigms
2.6.9 and 2.6.12 and the LLNL CHAOS kernel, a special- thys, have the potential for improved scalability and perfo
ized version of RHEL4. Our results indicate that Xen is mance over prior VMM imp|ementa‘[ions_ A |arge number

very efficient and practical for HPC systems. of popular VMMs employ paravirtualization in some form
to reduce the overhead of virtualization [1, 32, 23, 16].
1. Introduction Despite the flexibility benefits, performance advances,

and recent research indicating its potential [18, 36, 12, 15
virtualization is currently not used in high-performance

\ﬁr}uahzauolr! 'T awuilely usied tlechnlque in which e;]tsokl:t- computing (HPC) environments. One reason for this is the
ware layer multiplexes lower-level resources among higher perception that the remaining overhead that VMMs intro-

level applications and system software. Examples of virtu- duce — even highly optimized VMMs — is still unacceptable

a:cization systems include a vast body of WO}:'_( in the area ¢, o rformance-critical applications and systems. Tha go
of operating systems [27, 25, 21, 24, 3, 13], high-levellan- ¢ o - \york is to evaluate empirically and to quantify the

guage virtual machines such as those for Java and .Net, anddegree to which this perception is true, specifically for the

*This work is sponsored in part by LLNL and NSF grants (ST-HEC- Linux operating system and the Xen [23] paravirtualizing
0444412 and CNS-0546737). VMM.




Xen is an open-source virtual machine monitor for the 2. Background and M otivation
Linux operating system which reports low-overhead and ef-

ficient execution of Linux [31]. Linux, itself, is the cur- Our investigation into the performance implications of

rent operating system of choice when building and_deploy- paravirtualization for high performance computing (HPC)
ing computational clusters composed of commodity com- systems stems from the need to improve the flexibility

;onentg. In this Wol_rllgéve study;he E}en;ormancelimpact of of large-scale HPC clusters at Lawrence Livermore Na-
en using current commodity hardware at Lawrence y;,,.,| Laboratory (LLNL) without introducing serious per-

Livermore National Laboratory_(LLI\_lL). _Xen is an ideal formance degradations. For example, Xen currently sup-
candidate VMM for an HPC semng gl_ven_|_ts large-scale de- ports guest-OS suspend/resume and system image migra-
¥elopmer:jt effolrts' [23]; 33] ar‘; Its avaﬂa:nl:ty,fperfornwn tion. If it does not impose a substantial performance cost,
ocus, and evolution for a wide range of platiorms. we believe it is possible to use this facility to implement

We objectively compare the performance of benchmarks @utomatic checkpoint/restart for cluster users withoutimo
and applications using a Xen-based Linux system againstfications to the Linux kernel. The resulting system, then,
three Linux OS versions and configurations currently in use implements an important functionality with no impact on
for HPC application execution at LLNL and other super- USer programming effort and without the maintenance dif-
computing sites. The Linux versions include Red Hat Enter- ficulties associated with the use of non-standard operating
prise Linux 4 (RHELA4) for build versions 2.6.9 and 2.6.12 System kernels.

and the LLNL CHAOS kernel, a specialized version of OS migration is an added benefit to full-system virtual-
RHEL4 version 2.6.9. ization that makes deployment and maintenance of VMM-

based HPC clusters appealing. Not only can effective mi-

We have collected performance data using micro- and gration be used for load balancing, but also it can be used
macro-benchmarks from the HPC Challenge, LLNL ASC for proactive replacement of failing hardware. For exam-
Purple, and NAS parallel benchmark suites among oth-ple, in the current system deployment at HPC centers, if a
ers, as well as using a large-scale, HPC application forhardware failure occurs, the application which was running
simulation of oceanographic and climatologic phenomenaon it normally has to be restarted from the last checkpoint.
(c.f. [34, 35] for complete details). However, due to space A proactive approach can avoid this re-execution overhead
limitations, we focus in this paper only on the perfor- py migrating applications off of machines requiring main-
mance evaluation of the paravirtualized computational andtenance or exhibiting behaviors indicative of potentiél fa
communications subsystems, including MPI-based networkyres (disk errors, fan speed inconsistency, etc.). Sucp-an a
bandwidth and latency, and CPU processing. proach can potentially save HPC centers thousands of com-

We find that the Xen paravirtualizing system, in gen- putational hours and leading to higher hardware utilizatio
' rates.

eral, does not introduce significant overhead over the other o . .
In addition, it is possible for one cluster to run different

OS configurations that we study — including the specialized . . ) ) . .
g y ¢ P Linux images which aids software maintenance (by provid-

CHAOS kernel — for almost all of the test cases. The one . q th that d ¢ . nale OS ©

exception is for the bidirectional MPI network bandwidth mg:nﬂupgrat € pda I a bofhs Ino requw(;a a smg € ¢ up-

where the performance impactis only for a small number of 3"a¢€ even)an_ allows both legacy codes and new func-
It|onal|ty to co-exist. VMMs also enable very fast OS in-

message sizes and is generally small. Curiously, in a smal . . .
number of other cases, Xen improves subsystem or full syS_stallatlon (even more when coupled with effective check-
' pointing), and thus, their use can result in significant cedu

tem performance over various other kernels due to its im- i . tem d time f boot. Finallv. VMMs off
plementation for efficient interaction between the guedt an lons In system down time for reboot. Finaily, S ofter
the potential for facilitating the use of customized opieigt

host OS. Overall, we find that Xen does not impose an oner- L -
ous performance penalty for a wide range of HPC program systems [18, 36.’ 1.2’.15] that are qpt|m|zed for, and tailored
to the needs of individual applications.

behaviors and applications. As a result we believe the flex- _ i o
ibility and potential for enhanced security that Xen offers  1hough many of the benefits of virtualization are well
known, the perceived cost of virtualization is what makes

makes it useful in a commodity HPC context. ! - )
it of questionable use to the HPC community, where per-

In the sections that follow, we first present background formance is critical. This overhead however, has been the
and motivation for the use of paravirtualized systems in focus of much optimization effort recently. In particular,
HPC environments. In Section 3, we overview our exper- extant, performance-aware, VMMSs such as Xen [23], em-
imental methodology, platform, operating systems, VMM ploy paravirtualizationto reduce virtualization overhead.
configuration, and applications. We then present our result Paravirtualization is the process of simplifying the ifcee
(Section 4), the related work (Section 5), and our conclu- exported by the hardware in a way that eliminates hardware
sions and future work (Section 6). features that are difficult to virtualize. No applicatiordeo



must be changed to execute using a paravirtualizing systemLLNL. CHAQOS is a Linux distribution based on RHEL4
such as Xen. A more detailed overview of system-level vir- v2.6.9 that LLNL computer scientists have customized for
tual machines, and paravirtualization can be found in [28]. the LLNL HPC cluster hardware and for the specific needs
To investigate the performance implications of using par- of current users. In addition, CHAOS extends the origi-
avirtualization for HPC systems, we have performed a rigor- nal distribution with new administrator tools, support for
ous empirical evaluation of HPC systems with and without very large Linux clusters, and HPC application develop-
virtualization using a wide range of HPC benchmarks, ker- ment. Examples of these extensions include utilities for
nels, and applications, using LLNL HPC hardware. More- cluster monitoring, system installation, power/consossm
over, we compare VMM-based execution with a number agement, and parallel job launch, among others. We em-

of non-VMM-based Linux systems, including the one cur-
rently employed by and specialized for LLNL users and
HPC clusters. We investigate the effects of paravirtualiza

ploy the latest release of CHAOS as of this writing which is
v2.6.9-22; we refer to this system as CHAOS kernel in our
results.

tion on the two most critical application performance com-  Our Xen-based Linux kernel (host JS)s RHEL4
ponents — interprocess communication and per-processoy2.6.12 with the Xen 3.0.1 patch. Above Xen, i.e. the
execution speed — as a way of gauging whether a moreguest kernel, is a paravirtualized Linux RHEL4 v2.6.12,
full-scale engineering effort to deploy paravirtualipatiat which we configure with 4 virtual CPUs and 2GB of vir-
LLNL should be mounted. tual memory. We refer to this overall configuration)éesn
in our results. Xen v3 is not available for Linux v2.6.9,
the latest version for which the CHAOS extensions are
available. We thus, include both v2.6.9 and v2.6.12 (non-
CHAOS and non-XEN) in our study to identify and isolate
any performance differences between these versions. For
RHEL2.6.9, RHEL2.6.12, and CHAQOS, we execute the ap-
lications without VMM (Xen) support. Only Xen employs
MM support.

3. Methodology and Hardware Platform

Our experimental hardware platform consists of a four-
node cluster of InteExtendedMemory 64 Technology
(EM64T) machines. Each node consists of four Intel Xeon
3.40 GHz processors, each with a 16KB L1 data cache an
a 1024KB L2 cache. Each node has 4GB of RAM and a
120 GB SCSI hard disk with DMA enabled. The nodes
are interconnected with an Intel PRO/1000 1Gigabit Eth- 3.2. Benchmarks
ernet network fabric using the g interface with TCP/IP.

We use ANL's implementation of message passing interface  We have done an extensive performance evaluation for
(MPI) protocol; i.e. MPICH v1.2.7p1 for establishing com- the different subsystems using a wide range of standard
munications between the distributed processes on differenbenchmarks for the communications, computations, Disk
nodes in the cluster. I/O and memory performance. Furthermore, we have used

We perform our experiments by repeatedly executing the macro-benchmarks and real HPC applications to evalu-
benchmarks and collecting the performance data. We per-ate the overall performance of the paravirtualized system.
form 50 runs per benchmark code per kernel and computeHowever, we opt to include only the communication and
the average across runs. Furthermore, we perfotfrest computational subsystems performance evaluations in this
at thear > 0.95 significance level to compare the means of workshop paper, due to space limitations. The comprehen-
two sets of experiments (e.g. those from two different ker- sive set of results are included in a thorough technicalntepo
nels). The t-test tells us whether the difference between th [34, 35].
observed means is statistically significant. More informa-  Our micro-benchmark set includes programs from the
tion on the t-test and the formulation we use can be foundHPC Challenge [20] and LLNL ASC Purple [2]. The pro-
in[19, 5]. grams are specifically designed to evaluate distinct per-
formance characteristics of machine subsystems includ-
ing MPI-based network bandwidth and latency, and CPU
processing. The ASC Purple Presta suite evaluates inter-
process network latency and bandwidth for MPI message

We empirically compare four different HPC Linux op- passing operations. The benchmark is written in C. We em-
erating systems. The first two are current releases of theploy two of the benchmark codes to evaluate latency (Laten)
RedHat Enterprise Linux 4 (RHEL4) system. We employ and bandwidth (Com). Presta uses Miime to report the

3.1. HPC Linux Operating System Com-
parison

builds v2.6.9 and v2.6.12 and refer to them respectively in
this paper aRHEL2.6.9andRHEL2.6.12

We also evaluate the CHAOS kernel. CHAOS is the
ClusteredHigh-Availability, OperatingSystem [9, 6] from

1The Xen host OS is commonly referred to as dom0 and the guest OS
which sits above domO is commonly referred to as domU (U fqriviz
leged). We also refer to the two kernels as the host OS andutest @S,
respectively
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Figure 1. Com benchmark results for average network bandwid th (MB/s) for the MPI unidirectional
(left graph) and the MPI bidirectional test (right graph)

time measurements of the codes, therefore we configure the Our MPI micro-benchmarks are part of the LLNL ASC
code to perform one thousand operations between calls tdPurple Presta Stress Benchmark v1.2 [26]. To investigate
MPI_wtime to obtain accurate resolution. unidirectional and bidirectional bandwidth, we employ the
To evaluate computational overhead, we employ the Combenchmark. Com calculates bisectional bandwidth for
freely available Linpack benchmark [22]. Linpack is a li- unidirectional and bidirectional MPI process communica-
brary that solves dense systems of linear equations. Ation. Com outputs both bandwidth and the average time
benchmark based on the library, which is available in both calculated for the longest operation per test. We referdo th
C and Fortran, and parallel and serial versions is deployedlatter as operation time (OpTime) and report these values in
in this study. We employ the serial Fortran implementation microseconds. Each test consists of 1000 operations and we
as our micro-benchmark for evaluating computational per- consider 1 pair of MPI processes. We vary the message size
formance in isolation of other factors. from 2° to 223 bytes. Our cluster system currently imple-
ments cluster connectivity via 1000Mb (12.5MB/s) Ether-
net.

Figure 1 shows the bandwidth attained by the different
kernels for unidirectional (left graph) and bidirectionas-

In this section, we evaluate the performance impact of sages (right graph). The y-axis in each graph is the attained
using virtualization for specific subsystems of our cluster pandwidth in MB/s as a function of the message size shown
system. We employ micro-benchmarks for network com- gjong the x-axis.
munication and computaupn. We present a_nd analyze_the Using MPI, a user code saturates the available bandwidth
results for each of these micro-benchmarks in the following at approximately 12 MB/s equally for all kernels (except

4. Benchmar ks Results

subsections. RHEL2.6.9 unidirectional MPI bandwidth) for both unidi-
rectional and bidirectional MPI messages. RHEL2.6.9 per-
4.1. Network Communication Performance forms significantly worse than the other three kernels for

the MPI unidirectional test. This is due to a known imple-
We first evaluate the impact Xen has on network com- mentation error in the TCP segmentation offload (TSO) of
munication performance_ We focus on the Message PassLinUX kernelsin versions prior t02.6.11. The bug causesthe
ing Interface (MP|) for this investigation since app“mts driver to limit the buffer size to the maximum transmission
commonly employ MPI to facilitate and coordinate dis- Unit (MTU) of the fabric and thus, to drop packets prema-
tributed execution of the program across cluster resourcesturely which results in the decreased bandwidth. This bug is
Although, applications differ in the type and amount of fixed in the CHAQOS, Xen, and RHEL v2.6.12 kernels, and
communication they perform [37], MPI micro-benchmark thus they are notimpacted by it.
performance gives us insight into the performance overhead Xen bandwidth for small buffer sizes is less than that
introduced by virtualized communication. achieved by CHAOS or RHEL2.6.12 in the unidirectional
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Figure 2. Com benchmark results forthe  max- Figure 3. Com benchmark results for OpTime
imum bandwidth (MB/s) attained by MPI bidi- for both MPI unidirectional and MPI bidirec-
rectional messages. tional tests. OpTime is the average time cal-
culated for the longest bandwidth operation
per test.

MPI test. This is due to the implementation of the network
layer in Xen. Xen provides two I/O rings of buffer descrip-
tors for each domain for network activity, one for transmit ring buffer descriptors which reduces the effective buffer
and the other for receive. To send a packet, the guest OSsize and thus, efficacy, of kernel buffering thereby reduc-
produces a buffer descriptor and adds it to the I/O ring. Theing the amount of overlap that Xen is able to achieve. All
host OS consumes the requests using a simple round-robikernels saturate the network at the same level for message
packet scheduler. The guest OS however, must exchange aizes greater than'2 We plan to investigate optimizations
page frame with host OS for each received packet in orderfor the 1/0 rings and descriptor managementin Xen as part
to ensure efficient packet reception. This process degradesf future work.
the bandwidth achieved for small packet-sends since there We present the OpTime for both unidirectional and bidi-
are a large number of guest-host interactions and heavy useectional messages in Figure 3. The y-axis is the average
of the I/O rings of buffer descriptors. Xen is able to amor- time in microseconds for the longest operation in a test as
tize this overhead as the buffer size increases. Simifanly, a function of the message size on the x-axis (lower is bet-
the bidirectional experiments, this difference is insfgaint ter). The data indicates that there is no significant diffees
for small packet sizes. in OpTime between Xen and Chaos and RHEL2.6.12. The
For the bidirectional experiments (right graph in Fig- RHEL2.6.9 data for the unidirectional test shows a statis-
ure 1), CHAOS, and RHEL2.6.12 achieve hypersaturation tically significant performance degradation in OpTime for
for message sizes betweel? 2and 26. This is due to large message sizes. This is a side-effect of the presence of
the buffering which the kernels perform that enables over- the TSO bug in the Ethernet driver as we described previ-
lap of communication and message processing. Xen andously.
RHEL2.6.9 do not achieve the same benefits as CHAOS We next evaluate network latency using the Presta Laten
and RHEL2.6.12 on average. Figure 2 shows the maxi-benchmark from the ASC Purple suite. Laten calculates the
mum bandwidth achieved across tests for different messaganaximum latency for a test (1000 operations) between pairs
sizes. These results show that RHEL2.6.9 behaves simi-of MPI processes as the elapsed time in a ping-pong com-
larly to CHAOS and RHEL2.6.12. Thus, the apparent loss munication. In this benchmark we vary the number of si-
of performance in the average for RHEL2.6.9 which we see multaneously communicating processes.
in figure 1 is due to greater variation in the collected data  Figure 4 shows the results for the four kernels. The y-
rather than an absolute loss. axis is the average of maximum latency in microseconds
However, Xen bidirectional performance for message between per test as a function of the number of processes
sizes 2* and 2° does not achieve the same maximum even shown on the x-axis (lower is better).
in the best case, i.e., there is a true systemic difference in  Although it is counter-intuitive, Xen has lower latency
absolute best-case performance for these message sizes. fler up to 32 MPI communicating processes than CHAOS
believe that this effect is due to the management of the dualand RHEL2.6.12. This is a result of the usgafje-flipping
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Figure 4. Laten MPI bidirectional results in Figure 5. Linpack LU decomposition 3000d
microseconds. performance relative to CHAOS. Lower is bet-

ter for metrics factor, solve and total times.
in Xen that optimizes data transfer by avoiding copying be-  Higher is better for Mflops.
tween the guest OS and the host OS. However, as the num-

ber of processes increases, the overhead of Xen's I/O ringsnore, the t-values for these differences show statistigal s
of buffer descriptors has a larger impact on the performancepificance even at th6.999 confidence level, but not be-
which the optimization cannot amortize to the same degree yeen Xen kernel and CHAOS kernel .

RHEL2.6.9 enables the lowest latency. This behavior
depicts an interesting effect of the TSO bug described ear-o¢ | |y n addition, the Xen kernel does appear to have a
lier. The bug causes RHEL2.6.9 to achieve lower bandwidth g, ter hack-solve time than the three other kernels, leut th
than the other kernels butalso to introduce less overh@ad fo y51yes do not indicate any statistical significance at the
individual sends that do not require buffering.

Most of the difference occurs during the factoring phase

0.95 confidence level. On the other hand, Xen achieves a to-
. tal Mflops rate that is approximately 2% lower than CHAOS
4.2. Computational Performance kernels and 3% higher than the RHEL kernels. The rea-
son behind better Mflops performance for Xen is due to its
HPC systems are performance-critical systems. Thecpu scheduling process: a very efficient implementation of
computational performance is undoubtedly one of the mostihe borrowed virtual time (BVT) scheduler [11]. BVT and
important factors -if not the most important- in characteri  the overhead of scheduling in general positively impacts th
ing the efficiency of the HPC system. Therefore, we also Mflops rate of Xen-based Linpack. CHAOS scheduler opti-
evaluate the computational performance of the paravirtual mizations enable additional performance improvements. As
ized system in Comparison with the non-virtualized kernels a result, a Xen-based CHAOS implementation (that we are
We use Linpack [10] LU decomposition for this study. puilding as part of future work) should be able to achieve

The Linpack LU decomposition process consists of two phenefits similar to those for CHAOS reported here.
phases: factoring and back-solve. The benchmark reports

the time taken in each phase and the rate of floating point
operations in mflops. Our input to Linpack is a matrix with 5. Related Research
3000x3000 in double-precision values.

Figure 5 illustrates a Linpack performance comparison  The work related to that which we pursue in this paper,
between the four kernels. The y-axis is the performanceincluded performance studies of virtualization-based sys
of the different kernels relative to the CHAOS kernel with tems. In this paper, we investigated the communications and
respect to the different metrics on the x-axis. The smaller computational performance of HPC benchmarks. We con-
the time ratio, the better but the higher the Mflops ratio is sider both subsystems’ performance for a number of impor-
the better. tant HPC components when using paravirtualizing systems

The comparison indicates that Xen is slower than for HPC cluster resources (x86-64, SMP machines).
CHAOS kernel for the factoring phase and in terms of the  Other work has investigated the performance of Xen
total time. However, Xen is faster than the two other RHEL and other similar technologies in a non-HPC setting. The
kernels in the factoring time and the total time. Further- most popular performance evaluation of Xen is described



in [23]. A similar, yet independent but concurrent, study  We compare three different Linux configurations with
is described in [7]. Both papers show the efficacy and low a Xen-based kernel. The three non-Xen kernels are those
overhead of paravirtualizing systems. The benchmarks thatcurrently in use at LLNL and other sites of HPC clusters:
both papers employ are general-purpose operating systemRedHat Enterprise 4 (RHEL4) for build versions 2.6.9 and
benchmarks. The systems that the authors evaluate are x862.6.12 and the LLNL CHAOS kernel, a specialized version
32, stand-alone machines with a single processor. Furtherof RHEL4 version 2.6.9. We perform experiments using
more, those papers investigate the performance of the firsmicro-benchmarks from LLNL ASC Purple and HPC Chal-
release of Xen, which has changed significantly. We employlenge benchmark suites. As a result, we are able to rigor-
the latest version of Xen as of this writing (v3.0.1) that in- ously evaluate the performance of Xen-based HPC systems
cludes a wide range of optimization and features not presentelative to non-virtualized system for two subsystems: €om
in the earlier versions. putational and communications.

Students as part of an unpublished, class project at the  Our results indicate that, in general, the Xen paravirtual-
Norwegian University of Science and Technology (NTNU) izing system poses no statistically significant overheast ov
have investigated Xen performance for clusters [14]. This other OS configurations currently in use at LLNL for HPC
study investigates the network communication perfor- clusters — even one that is specialized for HPC clusters —
mance in Xen versus a native kernel using low-level and except in one instance. We find that this is the case for
application-level network communication benchmarks. The programs that exercise specific subsystems, a complete ma-
resulting Master’s Thesis [4] describes a port of Xen to chine, or combined cluster resources. In the instancesavher
IA64 but provides only a minimal evaluation. a performance difference is measurable, we detail how Xen

On the other hand, another study [29] done at Wayne either introduces overhead or somewhat counter-intiytive
State University investigated the communication perfor- produces superior performance over the other kernels.
mance for different network switch fabric on Linux clusters As part of future work, we are currently investigating a
They evaluated performance of Fast Ethernet using£h  number of research directions that make use of Xen-based
interface, Gigabit Ethernet using ¢4 interface, Myrinet  HPC systems. In particular, we are investigating techrique
using chp4 interface, and Myrinet using ajym interface.  for high-performance check-pointing and migration of full
Based on that study results, we anticipate that Xen wouldsystems to facilitate load balancing, to isolate hardware e
perform on Fast Ethernet and Myrinet using@h simi-  ror management, and to reduce down time for LLNL HPC
lar to how it did perform on Gigabit Ethernet in our study. clusters. We are also investigating techniques for autemat
However, It would be interesting to see how Xen page- QS installation over Xen [17] and for static and dynamic
flipping algorithm, described earlier interact with Myrtise  specialization of OS images in a way that is application-

OS-bypass features. specific [18, 36].
More recent studies evaluate other features of Xen such
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